
339

Sleep Hypn.2019 Dec;21(4): 339-350
http://dx.doi.org/10.37133/Sleep.Hypn.2019.21.0207

Sleep and Hypnosis
A Journal of Clinical Neuroscience and Psychopathology

ORIGINAL ARTICLE

History of effect sizes

Material in this paper is based on Sapp (2017), and 
he provides a primer on effect sizes, simple research 
designs, and confidence intervals. Huberty (2002) 
found that the history of effect size started around 
1940. The correlation ratio or eta coefficient was 
proposed during the 1940s. The correlation ratio is 
used to measure curvilinear relationships. In addition, 
eta measures the relationship between a grouping 
variable and a dependent or outcome variable. During 
this period, eta squared was connected to analysis of 
variance (ANOVA) to show the variance accounted 
for on a dependent variable. Eta=.826. Cohen 

characterized eta squared of .01 as a small effect size, 
an eta squared of .06 as a medium effect size, and an 
eta squared of .14 as a large effect size. 

The .683 is the variance accounted for on the 
dependent variable, and .826 is the correlation of the 
group identifications with the dependent variable. 
Ronald A. Fisher (1890-1961), in 1924, derived the 
probability of eta in the context of ANOVA. Truman 
(1935) Kelley (1884-1961) proposed an adjustment to 
the eta squared within the context of ANOVA. Some 
statisticians refer to this as the partial eta squared. 
The psychologist William L. Hays (1926-1995) in 
his popular textbook proposed omega squared as 
an alternative to eta squared. Omega squared is said 
to be derived through unbiased estimates. Omega 
squared =SSB-(K-1)MSW/(SST+MSW). Where SSB 
equals the sum of squares between and K equals the 
number of groups. MSW is the mean squares within, 
and SST is the total sum of squares. Generally, omega 
squared and eta squared will not differ much. If the 
levels of the grouping variable (independent variable) 
are random, in contrast to being fixed, the intraclass 
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correlation coefficient can be used as an effect size. 
The formula for the intraclass correlation R is the 
following:

R=(MSB-MSW)/[MSB+(n-1)MSW]
MSB and MSW are the numerator and denominator 

from an F statistic or test and n equals the number of 
participants per group.

In summary, at least three strengths of relationship 
effect sizes were proposed between 1935 to 1963: 
eta squared, omega squared, and the intraclass 
correlation coefficient. Karl Pearson (1857-1936), in 
1910, proposed the biserial correlation coefficient. It 
is used when a continuous variable is forced into a 
discrete variable and is correlated with a continuous 
variable. For example, suppose we were interested in 
the correlation between hypnotizablity and creative 
imagination. Both of these variables are continuous, 
but we forced the hypnotizability scores into high and 
low hypnotizability. The correlation between these two 
variables would be the biserial correlation coefficient. 
The biserial correlation coefficient cannot be used in 
regression in order to predict y values or dependent 
variables. Also, confidence intervals cannot be placed 
around the biserial correlation coefficient. Finally, 
the biserial correlation coefficient is less reliable 
than the Pearson correlation coefficient, and it is not 
recommended as an effect size.

Jacob Cohen, in 1969, proposed an effect size for 
a two group mean comparison, and Huberty (2002) 
referred to these as group differences indices. Cohen 
defined his effect size as the differences between 
means divided by the pool standard deviation across 
the two groups.  Like Cohen, the statistician Gene V. 
Glass also proposed a d effect size as the differences 
between means divided by the control group standard 
deviation. In addition, the statistician Larry V. 
Hedges took exception with Cohen and Glass, and 
he proposed an adjusted d that he called g (Huberty, 
2002). Cohen also proposed a standard difference 
type of effect size for multiple groups or multiple 
means context (ANOVA), and he used the letter f as 
this effect size, and it is the following formula:

f=[(K-1)F/N]1/2 
K is the number of groups, and F is the F statistics 

from ANOVA. N is the total group size. When using 
Cohen’s power tables the average group size is used 

or the harmonic mean if the group sizes are unequal. 
F can be seen as the standard deviation of the 
standardized means, or the variability of the group 
means relative to the standard deviation (Huberty, 
2002). Cohen (1977; 1988) characterized f equals .10 
as a small effect size, f=.25 as a medium effect size, 
and f>.40 as a large effect size. 

Huberty (2002) discussed another effect size based 
on overlap indices. Within a two-group situation, if 
two have a large amount of overlap the effect size will 
be small. Cohen (1988) also defined d as the percent of 
non-overlap of the treatment group scores with those 
of the untreated group. An effect size of zero indicates 
that the distribution of scores of the treatment group 
overlap completely with the distribution of the 
control group.  Cohen (1977) provided the following 
rough guidelines for interpreting the d effect size: d = 
.2 small effect size, d  = .5 medium effect size, 
and d = .8 large effect size.  	

One should not just blindly accept the standards 
based on Cohen’s work, but interpret effect sizes 
within a given professional area.

The r effect size and d effect size are related in that  

4d
dr
2 +

=
 

Also, d can be expressed as t using the following 
formula: d=t(1/n1+1/n2)1/2. The t is the value from a t 
test, and the n1 and n2 are the respective group sizes.

The following is the relationship between r and d:
	

	 d effect size	 r effect size
	 4.0	 .894
	 3.8	 .885
	 3.6	 .874
	 3.4	 .862
	 3.2	 .848
	 3.0	 .832
	 2.8	 .814
	 2.6	 .793
	 2.4	 .768
	 2.2	 .740
	 2.0	 .707
	 1.9	 .689
	 1.8	 .669
	 1.7	 .648
	 1.6	 .625
	 1.5	 .600
	 1.4	 .573
	 1.3	 .545
	 1.2	 .514
	 1.1	 .482
	 1.0	 .447
 	  .9	 .410
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large	 .8	 .371
	 .7	 .330
	 .6	 .287
medium	 .5	 .243
	 .4	 .196
	 .3	 .148
small	 .2	 100
	 .1	 .050
	 0	 0

	
With his history of effect sizes, the final group of 

effect sizes that he discussed were the multivariate 
indices (Huberty, 2002). The concept of multiple 
regression or the multiple correlation coefficient 
was developed in 1914 by Pearson and Lee (1897). 
Cohen’s f 2    equals R 2/(1-R 2). R is the multiple 
correlation coefficient. Multivariate Analysis of 
Variance (MANOVA) is applicable to a group variable 
situation where participants are measured on two or 
more dependent or outcome variables. Maurice M. 
Tatsuoka (1922-1996) summarized the literature in 
this area in 1973. Tatsuoka (1970) connected Samuel 
S. Wilks’ (1906-1964) Lambda to the MANOVA 
context as a measure of multivariate strength of 
association. The smaller the value of Wilks’ Lambda, 
the stronger the multivariate effect. 

After reviewing several journals within the area 
of hypnosis, I found few studies addressing basic 
measurement issues, effect sizes, and confidence 
intervals. With this is in mind, the purpose of 
this section is to address these factors. Because 
sufficient narrative is used in place of formulas, I 
hope that researchers can apply these concepts to 
their research. These sections are divided into the 
following parts: reliability, effect sizes, definition of 
multivariate statistics effect size, testing calculated 
validity coefficients against hypothesized values, 
standard error of estimate, confidence intervals 
around validity, and discussion.

Reliability
Classical test theory is the model often taught 

in basic psychological measurement classes.  
Measurement experts have used this theory of 
measurement since the turn of the century.  Many 
times, it is used to find reliability measures such as 
test-retest, internal consistency, and so on.  It is also 
referred to as the true score, and it has the following 
mathematical model:

X = T + E
X = a person’s score or an observed score
T = a person’s true score
E = the error score
Theoretically, reliability can be expressed as the 

ratio of true score variance divided by the observed 
score variance.  If we symbolize reliability as rxx, it can 
be expressed mathematically as
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A specific form of reliability, called coefficient alpha, is defined by two quantities. First, the 

number of test items divided by the number of test items minus one. The second quantity is one 

minus the sum of item variances divided by the total test variance. Finally, these quantities are 
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where K equals the number of items 

ΣS2
i equals the variance across-test items 

S2
t equals the variance for the participants' total test scores. 

Verbally, coefficient alpha is the following:  

 

Sapp (2013) recommended interpreting test scores using the standard error of measurement. 

This index measures the amount of error within test items. Essentially, this is the standard 

deviation for a set of items, and this formula is the following:  

Se = Sx 1 - rxx 

 

Reliability is the variance that is accounted for on a set of  hypnotizability test items; hence, it 

is a squared correlation or squared area. Reliability is the percent of variance accounted for on 

a hypnosis measure. Once a hypnosis test is standardized, the reliability that is reported in a 

manual is the reliability measure for the standardization sample, but this value does not tell one 

how another independent sample will respond to those test items; therefore, within the 21st 

century, measurement theorists make a distinction between reliability of the standardization 

sample and reliability of an independent sample. The important point is that reliability involves 

how individuals respond to hypnosis test items; hence, reliability is not invariant; meaning it 

does not change from sample to sample. The only way to know reliability for a given sample is 

to calculate it. In essence, reliability is the consistency that a sample responds to a set of test 

items. Sadly, within a multicultural perspective, often minorities are not included within the 

standardization process for available hypnosis tests.   

Internal consistency can determine the consistency of test items. Coefficient alpha is the most 

used measure of internal consistency. Suppose that 12 Latino college students completed 6 

items that measured dissociation, and these items were rated on a 4 point scale. The following 

output from SPSS has coefficient alpha, and the 95% confidence interval around the population 
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Sapp (2013) recommended interpreting test 
scores using the standard error of measurement. This 
index measures the amount of error within test items. 
Essentially, this is the standard deviation for a set of 
items, and this formula is the following: 
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Reliability is the variance that is accounted for on a 
set of  hypnotizability test items; hence, it is a squared 
correlation or squared area. Reliability is the percent 
of variance accounted for on a hypnosis measure. Once 
a hypnosis test is standardized, the reliability that is 
reported in a manual is the reliability measure for the 
standardization sample, but this value does not tell 
one how another independent sample will respond 
to those test items; therefore, within the 21st century, 
measurement theorists make a distinction between 
reliability of the standardization sample and reliability 
of an independent sample. The important point is 
that reliability involves how individuals respond to 
hypnosis test items; hence, reliability is not invariant; 
meaning it does not change from sample to sample. 
The only way to know reliability for a given sample is 
to calculate it. In essence, reliability is the consistency 
that a sample responds to a set of test items. Sadly, 
within a multicultural perspective, often minorities 
are not included within the standardization process 
for available hypnosis tests.  

Internal consistency can determine the 
consistency of test items. Coefficient alpha is the 
most used measure of internal consistency. Suppose 
that 12 Latino college students completed 6 items that 
measured dissociation, and these items were rated on 
a 4 point scale. The following output from SPSS has 
coefficient alpha, and the 95% confidence interval 
around the population coefficient alpha. These data 
for this example are the following:

These data that follow are in the following form: 
participant, item 1, item 2, item 3 ,item 4, item5, and  
item 6:

1.	 1	 2	 3	 1	 4	 1
2.	 1	 1	 1	 1	 1	 1
3.	 1	 1	 2	 2	 4	 2
4.	 3	 3	 3	 3	 3	 3
5.	 1	 2	 3	 4	 4	 2
6.	 1	 2	 3	 4	 4	 1
7.	 2	 1	 3	 3	 3	 4
8.	 2	 1	 4	 4	 4	 1
9.	 2	 1	 3	 4	 3	 2 
10.	 2	 2	 4	 3	 3	 3
11.	 2	 2	 3	 3	 3	 3
12.	 2	 2	 4	 3	 3	 4

The SPSS control lines for these data are the 
following:

Reliability
/VARIABLES=item1 item2 item3 item4 item5 item6
/SCALE(‘ALL VARIABLES’)  ALL/MODEL=ALPHA
/STATISTICS=DESCRIPTIVE SCALE CORR ANOVA
/ICC=MODEL(MIXED) TYPE(CONSISTENCY) 
CIN=95 TESTVAL=0 .

The following are the output for coefficient alpha:

Reliability statistics

Cronbach’s Alpha
Cronbach’s 

Alpha Based on 
Standardized Items

N of Items

.691 .709 6

Coefficient alpha or Cronbach’s alpha was .691. 
This tell us that 69.1% on these items is true score 
variance, and 1-.691, and .309 or 30.9 % is the error 
variance. Is summary, the point estimate, or alpha 
for this sample data was .691. Later, when confidence 
intervals are discussed, a confidence interval will be 
provided for the population coefficient alpha.

Validity
Validity, determines if hypnosis items measure 

what they are suppose to measure. Like reliability, 
since minorities are seldom included within 
standardization samples for hypnosis tests that 
measure validity.  Often, when researchers speak 
about validity, they are referring to criterion validity. 
Criterion validity tells the degree that items from 
two hypnosis tests correlate. Sapp (2006) reported 
that validity coefficients tend to fall with .20 and .60.  
Unlike reliability coefficients, validity coefficients 
must be squared to find the variance account for, 
or the coefficient of determination. For example, a 
validity coefficient of .5 states that .25 or 25% of the 
variance can be explained, and 75% of the variance is 
unexplained. 

Effect sizes
Effect sizes are seldom reported within hypnosis 

research. Effect sizes allow researchers to if statistical 
results have practical significance, and they allow one 
to determine the degree of effect hypnosis has within 
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a population; or simply stated, the degree in which 
the null hypothesis may be false.  There are over 40 
different effect sizes, but, as I discussed within the 
history of effect size section, they can be group into 
two broad areas-means differences effect sizes like 
the d effect size and correlational effect sizes like 
effect size r (Ferguson, 2009).

Cohen (1977) defined the most basic effect 
measure, the statistic that is synthesized, as an analog 
to the t-tests for means.  Specifically, for a two-
group situation, he defined the d effect size as the 
differences between two population means divided by 
the standard deviation of either population, because 
homogeneity or equality of variances is assumed.  
This effect size has the general formula:

 

general formula: 

   

   

Suppose  equals the population mean, and in this case we are using it to represent the 

treatment group population mean of 1.0.  And let us assume that , the population mean for 

the control group, equals .2, and, finally,  = 1.00.  By substitution,  

 

Hedges’ g or d is Cohen’s d[1-(3/4df-1)] The df is the total sample size minus two. Now, this 

formula can create confusion because different effect sizes can be found for the same data.  For 

example, the  or population standard deviation can be from the control group posttest 

measure. In addition, it can be the pretest standard deviation for the control group, or it can be 

the pooled or weighted standard deviation that involves both groups.  Therefore, within a study, 

at least three different d effect sizes can be obtained.  First, one based on the control group 

posttest measure standard deviation. Second, another based on the control group pretest 

measure, and a d effect size measure based on the average standard deviation for the treatment 

and control group.   

As stated early, the differences between means divided by the control group standard deviation 

is actually Glass’s delta and not the specific d that Cohen proposed, but many researchers 

assume that all ds are Cohen’s ds. The d that Cohen proposed was the differences between two 

group means divided by the pool standard deviations of the treatment group and control group. 

Cohen’s d assumes homogeneity of variance and this assumption is violated one would want to 

chose which standard deviation to use because they cannot be pooled. With repeated measures 

designs, it can be argued that it does not make sense to calculate Cohen’s d. This is because 

Cohen’s d was developed for independent groups. One can use eta squared with repeated 

measures designs. In practice, many researchers, for Cohen’s d, find the differences between 

the treatment and control groups means divided by the average of the standard deviation of the 

treatment group and the standard deviation of the control group. Cohen’s d is upward biased 

and this is why Hedges developed his d to take into account this biased. Cohen’s d is more 
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 or population standard deviation can be from the 
control group posttest measure. In addition, it can be 
the pretest standard deviation for the control group, 
or it can be the pooled or weighted standard deviation 
that involves both groups.  Therefore, within a study, 
at least three different d effect sizes can be obtained.  
First, one based on the control group posttest 
measure standard deviation. Second, another based 

on the control group pretest measure, and a d effect 
size measure based on the average standard deviation 
for the treatment and control group.  

As stated early, the differences between means 
divided by the control group standard deviation 
is actually Glass’s delta and not the specific d that 
Cohen proposed, but many researchers assume that 
all ds are Cohen’s ds. The d that Cohen proposed was 
the differences between two group means divided by 
the pool standard deviations of the treatment group 
and control group. Cohen’s d assumes homogeneity 
of variance and this assumption is violated one would 
want to chose which standard deviation to use because 
they cannot be pooled. With repeated measures 
designs, it can be argued that it does not make sense 
to calculate Cohen’s d. This is because Cohen’s d was 
developed for independent groups. One can use eta 
squared with repeated measures designs. In practice, 
many researchers, for Cohen’s d, find the differences 
between the treatment and control groups means 
divided by the average of the standard deviation of 
the treatment group and the standard deviation of the 
control group. Cohen’s d is upward biased and this is 
why Hedges developed his d to take into account this 
biased. Cohen’s d is more appropriate for population 
data while Hedges’ d is more appropriate for sample 
data. These d effect sizes from several studies can be 
averaged, and the result is an overall effect size for 
a series of studies. Meta-analysis is just the overall 
effect for a given area or mean effect size, and it is 
obtained by adding the effects sizes and dividing 
by the total number (Ferguson, 2007). Also, effect 
sizes are used for statistical power analysis, or the 
probability of rejecting a false null hypothesis. 

Although Cohen (1977) provided the following 
rough guidelines for interpreting the d effect size: d 
= .2 small effect size, d = .5 medium effect size, and d 
= .8 large effect size, researchers should not interpret 
blindly effect sizes as small, medium, and large.  One 
must interpret effect sizes within a given professional 
area.

There is another effect size called r, and it was 
described by Rosenthal (1984).  The reader may 
remember that r is the Pearson product-moment 
correlation coefficient.  Mathematically, r is the 
covariance, the amount two variables vary co-varies, 
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divided by the number of pairs times the product 
of the standard deviation for each variable. The 
following is the formula for the

Pearson product-moment correlation: 

 

appropriate for population data while Hedges’ d is more appropriate for sample data. These d 

effect sizes from several studies can be averaged, and the result is an overall effect size for a 

series of studies. Meta-analysis is just the overall effect for a given area or mean effect size, 

and it is obtained by adding the effects sizes and dividing by the total number (Ferguson, 2007). 
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null hypothesis.  

Although Cohen (1977) provided the following rough guidelines for interpreting the d effect 

size: d = .2 small effect size, d = .5 medium effect size, and d = .8 large effect size, researchers 

should not interpret blindly effect sizes as small, medium, and large.  One must interpret effect 

sizes within a given professional area. 

There is another effect size called r, and it was described by Rosenthal (1984).  The reader may 

remember that r is the Pearson product-moment correlation coefficient.  Mathematically, r is 

the covariance, the amount two variables vary co-varies, divided by the number of pairs times 

the product of the standard deviation for each variable. The following is the formula for the 

Pearson product-moment correlation: r = . 

Here, Zx is every X value minus the mean of the X values divided by the standard deviation of 

the X values.  Similarly, Zy is every Y value minus the mean of the Y values divided by the 

standard deviation of the Y values.  Zx and Zy are analogous to standard deviation and are 

referred to as moments, hence the name Pearson Product-Moment Correlation.  The reader 

should note that a moment is a measure of variability like the standard deviation.  Like Cohen 

(1977), Rosenthal  (1984) provided the following rough guidelines for r: r = .1 small effect size, 

r = .3 medium effect size, and r = .5 large effect size. The following section will describe a 

common multivariate effect size that is analogous to the d effect size. 

DEFINITIONS OF MULTIVARIATE STATISTICS 

The term multivariate can be a confusing term, but in one sense it involves examining several 

variables simultaneously. Within a regression context, it is the relationship between two or more 

predictors (independent variables) and a dependent variable. From a multivariate regression 

context, it involves the relationship between two or more predictors and two or more dependent 

variables. Other multivariate correlation methods are path analysis, factor analysis, principal 

components analysis, canonical correlation, and predictive discriminant analysis (Stevens, 

2002). 
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Here, Zx is every X value minus the mean of the 
X values divided by the standard deviation of the X 
values.  Similarly, Zy is every Y value minus the mean 
of the Y values divided by the standard deviation of 
the Y values.  Zx and Zy are analogous to standard 
deviation and are referred to as moments, hence the 
name Pearson Product-Moment Correlation.  The 
reader should note that a moment is a measure of 
variability like the standard deviation.  Like Cohen 
(1977), Rosenthal  (1984) provided the following 
rough guidelines for r: r = .1 small effect size, r = .3 
medium effect size, and r = .5 large effect size. The 
following section will describe a common multivariate 
effect size that is analogous to the d effect size.

Definitions of multivariate statistics
The term multivariate can be a confusing term, but 

in one sense it involves examining several variables 
simultaneously. Within a regression context, it is 
the relationship between two or more predictors 
(independent variables) and a dependent variable. 
From a multivariate regression context, it involves 
the relationship between two or more predictors and 
two or more dependent variables. Other multivariate 
correlation methods are path analysis, factor analysis, 
principal components analysis, canonical correlation, 
and predictive discriminant analysis (Stevens, 2002).

When two or more groups of participants are 
measured on several dependent variables, this is 
a multivariate analysis of variance (MANOVA), a 
multivariate extension of ANOVA. Multivariate 
analysis of covariance (MANCOVA), a multivariate 
generalization of ANCOVA, step down analysis, 
a multivariate test procedure that focuses on the 
ordering of dependent variables through a series of 
analyses of covariance, and descriptive discriminant 
analysis, a multivariate technique that determines 
group membership, and log linear analysis, an 
extension of the chi-square test to three or more 
variables are all examples of multivariate statistics.  

In summary, if participants are measured on two or 
more dependent variables, a multivariate situation 
exists.

Why are multivariate statistics important? First, 
they control type I error, but with many univariate 
tests it cannot be easily estimated. Second, univariate 
statistics do not take into account the correlations 
among variables. Finally, multivariate statistics are 
more powerful statistically than univariate statistics.  

Hotelling’s T squared is the squared multivariate 
generalization of the t test. The univariate t test is the 
following:

 

When two or more groups of participants are measured on several dependent variables, this is 

a multivariate analysis of variance (MANOVA), a multivariate extension of ANOVA. 

Multivariate analysis of covariance (MANCOVA), a multivariate generalization of ANCOVA, 

step down analysis, a multivariate test procedure that focuses on the ordering of dependent 
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multivariate technique that determines group membership, and log linear analysis, an extension 
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Why are multivariate statistics important? First, they control type I error, but with many 

univariate tests it cannot be easily estimated. Second, univariate statistics do not take into 

account the correlations among variables. Finally, multivariate statistics are more powerful 

statistically than univariate statistics.   

Hotelling’s T squared is the squared multivariate generalization of the t test. The univariate t 

test is the following: 

   

Hoteling’s T2  is the following: 

       

 transpose of vector of means  

S- sample covariance matrix 

S -1   matrix analogue of division is inversion 

  vectors of means 

The connection between Hotelling’s T2 and F is the following: 

 

This formula shows that T2  provides a F distribution with p and (N-P-1) degrees of freedom.  
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vectors of means

The connection between Hotelling’s T2 and F is the 
following:

 

When two or more groups of participants are measured on several dependent variables, this is 

a multivariate analysis of variance (MANOVA), a multivariate extension of ANOVA. 

Multivariate analysis of covariance (MANCOVA), a multivariate generalization of ANCOVA, 

step down analysis, a multivariate test procedure that focuses on the ordering of dependent 

variables through a series of analyses of covariance, and descriptive discriminant analysis, a 

multivariate technique that determines group membership, and log linear analysis, an extension 

of the chi-square test to three or more variables are all examples of multivariate statistics.  In 

summary, if participants are measured on two or more dependent variables, a multivariate 

situation exists. 

Why are multivariate statistics important? First, they control type I error, but with many 

univariate tests it cannot be easily estimated. Second, univariate statistics do not take into 

account the correlations among variables. Finally, multivariate statistics are more powerful 

statistically than univariate statistics.   

Hotelling’s T squared is the squared multivariate generalization of the t test. The univariate t 

test is the following: 

   

Hoteling’s T2  is the following: 
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S -1   matrix analogue of division is inversion 

  vectors of means 

The connection between Hotelling’s T2 and F is the following: 

 

This formula shows that T2  provides a F distribution with p and (N-P-1) degrees of freedom.  
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This formula shows that T2  provides a F distribution 
with p and (N-P-1) degrees of freedom.  The p is the 
number of dependent variables and N equals the 
sample size. Essentially, T2  is the comparison of 
between variability divided by within variability. 
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The univariate d and Mahalanobis distance (D2) 
are the following:

 

The p is the number of dependent variables and N equals the sample size. Essentially, T2  is the 

comparison of between variability divided by within variability.  

The univariate d and Mahalanobis distance (D2) are the following: 

univariate                   multivariate 

                   D2 =  

D2 is also the following two formulas:  

This is formula one.       

This is formula two.   

Formula two, clearly show how D2 takes into account the correlation of these variables. 

And T2 is the following: 

  

Stevens (2002) stated that values of .25 are small effect sizes, values of .5 are medium effect 

sizes, and values greater than one are large effect sizes. Unlike univariate statistics, 

Mahalanobis distance takes into account the intercorrelation of variables. Readers can refer to 

Sapp, Obiakor, Gregas, and Scholze (2007) and Stevens (2002) on how to calculate 

Mahalanobis statistic with SPSS. 

CONFIDENCE INTERVALS 

Ferguson (2009) and Sapp (2004) defined a confidence interval as an interval among an infinite 

number of intervals for a parameter such as population mean, population reliability coefficient, 

population proportion, population correlation coefficient, population difference and so on, in 

which one minus the alpha level would capture the population parameter a certain percentage 

of the time. For example, for a population mean, 95 percent of these intervals would capture 

the population mean and 5 percent would not. In contrast to point estimates, which describe 

sample data, confidence intervals describe population characteristics. More specifically, 

confidence intervals allow researchers to put a lower limit and upper limit around a population 

parameter. The 95 percent and 99 percent are most used intervals, but any interval width can be 

established. For the 99 percent interval, a researcher is assuming that 99% of these intervals 
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D2 is also the following two formulas: 

This is formula one.     

 

The p is the number of dependent variables and N equals the sample size. Essentially, T2  is the 

comparison of between variability divided by within variability.  

The univariate d and Mahalanobis distance (D2) are the following: 

univariate                   multivariate 

                   D2 =  

D2 is also the following two formulas:  

This is formula one.       

This is formula two.   

Formula two, clearly show how D2 takes into account the correlation of these variables. 

And T2 is the following: 

  

Stevens (2002) stated that values of .25 are small effect sizes, values of .5 are medium effect 

sizes, and values greater than one are large effect sizes. Unlike univariate statistics, 

Mahalanobis distance takes into account the intercorrelation of variables. Readers can refer to 

Sapp, Obiakor, Gregas, and Scholze (2007) and Stevens (2002) on how to calculate 

Mahalanobis statistic with SPSS. 

CONFIDENCE INTERVALS 

Ferguson (2009) and Sapp (2004) defined a confidence interval as an interval among an infinite 

number of intervals for a parameter such as population mean, population reliability coefficient, 

population proportion, population correlation coefficient, population difference and so on, in 

which one minus the alpha level would capture the population parameter a certain percentage 

of the time. For example, for a population mean, 95 percent of these intervals would capture 

the population mean and 5 percent would not. In contrast to point estimates, which describe 

sample data, confidence intervals describe population characteristics. More specifically, 

confidence intervals allow researchers to put a lower limit and upper limit around a population 

parameter. The 95 percent and 99 percent are most used intervals, but any interval width can be 

established. For the 99 percent interval, a researcher is assuming that 99% of these intervals 
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This  is  formula two.  

 

The p is the number of dependent variables and N equals the sample size. Essentially, T2  is the 

comparison of between variability divided by within variability.  

The univariate d and Mahalanobis distance (D2) are the following: 

univariate                   multivariate 

                   D2 =  

D2 is also the following two formulas:  

This is formula one.       

This is formula two.   

Formula two, clearly show how D2 takes into account the correlation of these variables. 

And T2 is the following: 

  

Stevens (2002) stated that values of .25 are small effect sizes, values of .5 are medium effect 

sizes, and values greater than one are large effect sizes. Unlike univariate statistics, 

Mahalanobis distance takes into account the intercorrelation of variables. Readers can refer to 

Sapp, Obiakor, Gregas, and Scholze (2007) and Stevens (2002) on how to calculate 

Mahalanobis statistic with SPSS. 

CONFIDENCE INTERVALS 

Ferguson (2009) and Sapp (2004) defined a confidence interval as an interval among an infinite 

number of intervals for a parameter such as population mean, population reliability coefficient, 

population proportion, population correlation coefficient, population difference and so on, in 

which one minus the alpha level would capture the population parameter a certain percentage 

of the time. For example, for a population mean, 95 percent of these intervals would capture 

the population mean and 5 percent would not. In contrast to point estimates, which describe 

sample data, confidence intervals describe population characteristics. More specifically, 

confidence intervals allow researchers to put a lower limit and upper limit around a population 

parameter. The 95 percent and 99 percent are most used intervals, but any interval width can be 

established. For the 99 percent interval, a researcher is assuming that 99% of these intervals 
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Formula two, clearly show how D2 takes into account 
the correlation of these variables.

And T2 is the following:
 

 

The p is the number of dependent variables and N equals the sample size. Essentially, T2  is the 

comparison of between variability divided by within variability.  

The univariate d and Mahalanobis distance (D2) are the following: 

univariate                   multivariate 

                   D2 =  

D2 is also the following two formulas:  

This is formula one.       

This is formula two.   

Formula two, clearly show how D2 takes into account the correlation of these variables. 

And T2 is the following: 

  

Stevens (2002) stated that values of .25 are small effect sizes, values of .5 are medium effect 

sizes, and values greater than one are large effect sizes. Unlike univariate statistics, 

Mahalanobis distance takes into account the intercorrelation of variables. Readers can refer to 

Sapp, Obiakor, Gregas, and Scholze (2007) and Stevens (2002) on how to calculate 

Mahalanobis statistic with SPSS. 

CONFIDENCE INTERVALS 

Ferguson (2009) and Sapp (2004) defined a confidence interval as an interval among an infinite 

number of intervals for a parameter such as population mean, population reliability coefficient, 

population proportion, population correlation coefficient, population difference and so on, in 

which one minus the alpha level would capture the population parameter a certain percentage 

of the time. For example, for a population mean, 95 percent of these intervals would capture 

the population mean and 5 percent would not. In contrast to point estimates, which describe 

sample data, confidence intervals describe population characteristics. More specifically, 

confidence intervals allow researchers to put a lower limit and upper limit around a population 

parameter. The 95 percent and 99 percent are most used intervals, but any interval width can be 

established. For the 99 percent interval, a researcher is assuming that 99% of these intervals 
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Stevens (2002) stated that values of .25 are small 
effect sizes, values of .5 are medium effect sizes, and 
values greater than one are large effect sizes. Unlike 
univariate statistics, Mahalanobis distance takes into 
account the intercorrelation of variables. Readers can 
refer to Sapp, Obiakor, Gregas, and Scholze (2007) 
and Stevens (2002) on how to calculate Mahalanobis 
statistic with SPSS.

Confidence intervals
Ferguson (2009) and Sapp (2004) defined 

a confidence interval as an interval among an 
infinite number of intervals for a parameter such as 
population mean, population reliability coefficient, 
population proportion, population correlation 
coefficient, population difference and so on, in 
which one minus the alpha level would capture the 
population parameter a certain percentage of the 
time. For example, for a population mean, 95 percent 
of these intervals would capture the population 
mean and 5 percent would not. In contrast to point 
estimates, which describe sample data, confidence 
intervals describe population characteristics. More 

specifically, confidence intervals allow researchers to 
put a lower limit and upper limit around a population 
parameter. The 95 percent and 99 percent are 
most used intervals, but any interval width can be 
established. For the 99 percent interval, a researcher 
is assuming that 99% of these intervals capture 
these population parameters, and 1 percent would 
not. Clearly, a 99 percent interval is wider than a 95 
percent one (Sapp, Obiakor, Scholze, & Gregas, 2007;  
Sapp, 2004a; Thompson, 2002).  

Confidence intervals can be placed around IQ and 
other standardized scores. For example, the Wechsler 
Adults Intelligence Scale (WAIS), a commonly 
used measure of intelligence, has a standard error 
of measurement of 5. Since the standard error of 
measurement is interpreted in terms of the normal 
curve, confidence intervals can be formed around IQ 
scores. For example, if an African American student 
had an IQ score of 100 on the WAIS, this IQ scores 
of 100 plus and minus one times the standard error 
approximates the 68% confidence interval. The IQ 
score of 100 minus the standard error of five equals 
95, which is the lower limit. And the IQ score of 100 
plus 5 equals the upper limit. This means we can 
expect this African American student’s true IQ score 
to fall between 95 and 105 68% of the time. Similarly, 
100 plus and minus 1.96 times the standard error 
of measurement (5) represents the 95% confidence 
interval. Finally, 100 plus and minus 2.58 times 
the standard error of measurement forms the 99% 
confidence interval. 

Testing calculated validity coefficients against
hypothesiozed values
Just as values of reliability can be tested against 

hypothesized values, the same test can be performed 
with validity coefficients.  Two independent validity 
coefficients can be tested for statistical significance 
using the following Z-test (Sapp, 1997).
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statistical significance using the following Z-test (Sapp, 1997). 

   Z =   

Zr1 and Zr2 are Fisher’s z transformations of r for the validity coefficients.  Suppose that sample 

one had a validity coefficient or index r1 = .50, with 100 participants and sample had a validity 

coefficient or r2 = .35, also with 100 participants.  The first step is to find the Fisher’s z 

transformation for each validity coefficient.  For r1 = .50, the Fisher’s z is Zr1 = .549, and for r2 

= .35, the Fisher’s z is .365.  Substituting into the formula: 
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Zr1 and Zr2 are Fisher’s z transformations of r for 
the validity coefficients.  Suppose that sample one 
had a validity coefficient or index r1 = .50, with 100 
participants and sample had a validity coefficient or 
r2 = .35, also with 100 participants.  The first step is 
to find the Fisher’s z transformation for each validity 
coefficient.  For r1 = .50, the Fisher’s z is Zr1 = .549, 
and for r2 = .35, the Fisher’s z is .365.  Substituting 
into the formula:

 

capture these population parameters, and 1 percent would not. Clearly, a 99 percent interval is 

wider than a 95 percent one (Sapp, Obiakor, Scholze, & Gregas, 2007;  Sapp, 2004a; 

Thompson, 2002).   

Confidence intervals can be placed around IQ and other standardized scores. For example, the 

Wechsler Adults Intelligence Scale (WAIS), a commonly used measure of intelligence, has a 

standard error of measurement of 5. Since the standard error of measurement is interpreted in 
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TESTING CALCULATED VALIDITY COEFFICIENTS AGAINST 

HYPOTHESIOZED VALUES 

Just as values of reliability can be tested against hypothesized values, the same test can be 
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=  1.281411732 or 1.28 at 2 decimal places. 

 

Because Z of 1.28 is not greater than a Z of 1.96 (critical value), the validity coefficients are 

not statistically significantly different.  Finally, for two related or correlated validity 

coefficients, the formula is the following: 

Z =  

Using the validity coefficients, suppose that a population validity coefficient of .50 exists within 

some bivariate normal distribution, and suppose a random sample of 100 participants were 

drawn randomly from the normal population distribution and the sample validity coefficient is 

.35.  Substituting into the formula provides the following:        

Z =  

= or 1.81 rounded to two decimal places. 

Again, since the calculated value of Z of 1.81 is not greater than the critical value of Z, which 

is 1.96, the two related validity coefficients are not statistically significantly different.   

CONFIDENCE INTERVALS AROUND VALIDITY 

Confidence intervals can be placed around validity. As previously stated, validity is the 

correlation among a set of items that been shown to be valid with a set of items being tested to 

determine their validity; therefore, validity can be defined as a simple correlation. The sampling 

distribution of the Pearson product-moment correlation, the most commonly used one, is 

skewed; therefore, this correlation must be turned into a logarithmic transformation. The reader 

can see Sapp (2006) for these transformations.  

Suppose, a researcher had a validity coefficient of .30 for a hypnosis study, how could one 

construct a 95% confidence interval around the population validity coefficient? First, turn the 

validity coefficient into its logarithmic transformation that is .31. Suppose this validity 
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Because Z of 1.28 is not greater than a Z of 1.96 
(critical value), the validity coefficients are not 
statistically significantly different.  Finally, for two 
related or correlated validity coefficients, the formula 
is the following:

 

 

=  1.281411732 or 1.28 at 2 decimal places. 

 

Because Z of 1.28 is not greater than a Z of 1.96 (critical value), the validity coefficients are 

not statistically significantly different.  Finally, for two related or correlated validity 

coefficients, the formula is the following: 

Z =  

Using the validity coefficients, suppose that a population validity coefficient of .50 exists within 

some bivariate normal distribution, and suppose a random sample of 100 participants were 

drawn randomly from the normal population distribution and the sample validity coefficient is 

.35.  Substituting into the formula provides the following:        

Z =  

= or 1.81 rounded to two decimal places. 

Again, since the calculated value of Z of 1.81 is not greater than the critical value of Z, which 

is 1.96, the two related validity coefficients are not statistically significantly different.   

CONFIDENCE INTERVALS AROUND VALIDITY 

Confidence intervals can be placed around validity. As previously stated, validity is the 

correlation among a set of items that been shown to be valid with a set of items being tested to 

determine their validity; therefore, validity can be defined as a simple correlation. The sampling 

distribution of the Pearson product-moment correlation, the most commonly used one, is 

skewed; therefore, this correlation must be turned into a logarithmic transformation. The reader 

can see Sapp (2006) for these transformations.  

Suppose, a researcher had a validity coefficient of .30 for a hypnosis study, how could one 

construct a 95% confidence interval around the population validity coefficient? First, turn the 

validity coefficient into its logarithmic transformation that is .31. Suppose this validity 

=
143591631.
184.

2
1

3
1

21

÷
ø
ö

ç
è
æ

-N

Z-Z rr

( ) 21010309278.

184.

2
1

97
1

365.549.
=

÷
ø
ö

ç
è
æ

-

812189836.1
101534617.
184.

=

Using the validity coefficients, suppose that a 
population validity coefficient of .50 exists within 
some bivariate normal distribution, and suppose 
a random sample of 100 participants were drawn 
randomly from the normal population distribution 
and the sample validity coefficient is .35.  Substituting 
into the formula provides the following:       
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= or 1.81 rounded to two decimal places.

Again, since the calculated value of Z of 1.81 is not 
greater than the critical value of Z, which is 1.96, the 
two related validity coefficients are not statistically 
significantly different.  

Confidence intervals around validity
Confidence intervals can be placed around validity. 

As previously stated, validity is the correlation 
among a set of items that been shown to be valid 
with a set of items being tested to determine their 
validity; therefore, validity can be defined as a simple 
correlation. The sampling distribution of the Pearson 
product-moment correlation, the most commonly 
used one, is skewed; therefore, this correlation must 
be turned into a logarithmic transformation. The 
reader can see Sapp (2006) for these transformations. 

Suppose, a researcher had a validity coefficient 
of .30 for a hypnosis study, how could one construct 
a 95% confidence interval around the population 
validity coefficient? First, turn the validity coefficient 
into its logarithmic transformation that is .31. Suppose 
this validity coefficient is based on 25 cases. Like 
the reliability example, we need the standard error, 
which is one divided by the square root of the number 
of cases minus three; therefore, the standard error is 
.21. The 95% confidence interval is .31 plus and minus 
1.96 times .21, so the lower limit is -.10 and the upper 
limit is .72. We have to transform these logarithmic 
values back to regular correlations, and these become 
-.10 for the lower limit and .62 for the upper limit. The 
reader should notice the confidence interval -.10, .62 
contains zero; therefore, the population correlation 
coefficient does not differ significantly from zero; 
therefore, there is not statistical significance. 

With centralized distributions such as the 
normal curve and t-distribution for centralized 
cases, confidence intervals are straightforward. For 
example, the confidence interval for the one-sample 
t-test is the sample mean plus and minus the critical 
value of the t test statistics times the standard error. 
For the two-sample t-test case, the sample mean is 
replaced with the difference between means. For 
example, the formula for the confidence interval for 
a two-sample t-test is the following: ( )t()XX  21 ±�
(standard error). Again, X bars are the sample 
means and t is the t test statistic. The t formula is the 

-
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following: 
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The Ss squared are the standard deviations of each group squared and the Ns are the sample 

sizes for each group. Confidence intervals can be placed around validity indices or correlation 

indices and multiple squared correlations (Sapp, 2012; Steiger & Fouladi, 1997; Smithson, 

2003). As previously stated, before a confidence interval can be establish, one must determine 

if one is working with a centralized or noncentalized distribution.  The reason the normal curve 

is centralized is because it has a population mean of zero and a standard deviation of one. The 

centralized t-distribution is a generalization of the normal distribution, and it is defined by a 

mean of zero and degrees of freedom. Noncentalized distributions are defined by their degrees 

of freedom and noncentalized parameters.  

The upper and lower limits for a confidence interval for a one-sample case are found by finding 

the mean plus and minus the critical value of the t test statistics times the standard error. The 

minus part of this definition provides the lower limit and the plus part provides the upper limit. 

The following is an example of a one-sample case with a 95 percent confidence interval.  

A Practical Example of a One Sample Case 95% Confidence Interval 

Assume that a university tested a random sample of ten students on the SAT, and the population 
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The Ss squared are the standard deviations of 
each group squared and the Ns are the sample sizes 
for each group. Confidence intervals can be placed 
around validity indices or correlation indices and 
multiple squared correlations (Sapp, 2012; Steiger & 
Fouladi, 1997; Smithson, 2003). As previously stated, 
before a confidence interval can be establish, one 
must determine if one is working with a centralized 
or noncentalized distribution.  The reason the normal 
curve is centralized is because it has a population 
mean of zero and a standard deviation of one. The 
centralized t-distribution is a generalization of the 
normal distribution, and it is defined by a mean 
of zero and degrees of freedom. Noncentalized 
distributions are defined by their degrees of freedom 
and noncentalized parameters. 

The upper and lower limits for a confidence 
interval for a one-sample case are found by finding 
the mean plus and minus the critical value of the t 
test statistics times the standard error. The minus 
part of this definition provides the lower limit and the 
plus part provides the upper limit. The following is 
an example of a one-sample case with a 95 percent 
confidence interval. 

A practical example of a one sample case 95%
confidence interval
Assume that a university tested a random sample 

of ten students on the SAT, and the population mean 
was 708. The following are these students’ SAT scores: 

708
707
710
708
711
707
708
710
707
709

Calculate the appropriate test statistic for this 
design. Is the test statistic significant? Calculate a 
95% confidence interval.

One-Sample Statistics

N Mean Std. 
Deviation

Std. Error 
Mean

SAT Score 10 708.5000 1.43372 .45338

One-Sample Test

Test Value = 708                                     

T df Sig. 
(2-tailed)

Mean 
Difference

95% Confidence 
Interval of the 

Difference

Lower Upper

SAT 
Score 1.103 9 .299 .50000 -.5256 1.5256

The appropriate test statistic for this design is the 
one-sample t-test, and statistical significance was not 
obtained because the level of significance or probability 
value was .299 for the t-test statistic; a value of .05 or 
lower is needed for statistical significance. The reader 
should notice that the 95% confidence interval of the 
difference between the sample mean and population 
mean has a lower limit of -.5256 and and upper limit 
of 1.5256. Since zero is included within the interval, 
a statistical significance difference was not found 
between the sample mean and the population mean. 
These upper and lower limits are found by taking the 
mean difference (sample mean of 708.5-705 =.50) 
plus and minus the critical value of t which is 2.262 
times the standard error which is .45338. The mean 
difference of .50 plus 1.02554556 equals 1.5256 
rounded to four decimal places. In contrast, the mean 
difference of .50 minus 1.02554556 equals -.5256 
rounded to four decimal places. This suggests that 
the sample mean is representative of the population 
mean. The confidence interval for the one-sample 
case t-test equals the mean plus and minus the critical 
value of t times the standard error of the mean. If the 
population mean is not known, the sample mean 
alone is used to find the confidence interval. Again, the 
critical value of t for nine degrees of freedom is 2.262; 
therefore, the upper limit for this confidence interval 
is 708.5+2.262(.45338). 2.262(.45338)=1.02554556.

708.5+1.02554556=709.5255456   upper limit
708.5-1.02554556=707.4744544   lower  limit
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Finally, we are 95% confidence that the mean SAT 
score of all these students lies between 707.5 to 709.5, 
and the sample value of 708 is representative of the 
population parameter. In summary, point estimates 
such as 708 describes a sample, and confidence 
intervals tell us what happens in the population and is 
an estimate of the population parameter.  In essence, 
it provides an estimate of the mean SAT score for 
all these students (population). The following is the 
general formula for a centralized confidence interval: 

Error) rd(t)(StandaX ± . X bar is the mean, and 
t is the critical value of t for the desired confidence 
interval, and the standard error is found by finding 
the standard deviation divided by the square root of 
the number of scores.

Confidence intervals for coefficient alpha
Confidence intervals for coefficient alpha involve 

noncentralized distribution. Let us take the example 
we used before for coefficient alpha. What is the 95% 
confidence interval around the population coefficient 
alpha?

The SPSS control lines for this example are the 
following:

Reliability
/VARIABLES=item1 item2 item3 item4 item5 item6
/SCALE(‘ALL VARIABLES’)  ALL/MODEL=ALPHA
 /STATISTICS=DESCRIPTIVE SCALE CORR ANOVA
/ICC=MODEL(MIXED) TYPE(CONSISTENCY) 
CIN=95 TESTVAL=0 .

These results for the 95% confidence interval 
around coefficient alpha were .308 for the lower limit 
and .897 for the upper limit.  Remember from earlier 
example, the .691 tells us happens with the sample 
data and is referred to as a sample measure of internal 
consistency. The 95% confidence interval captures 
the parameter called the population coefficient alpha, 
and it means that over repeated samples of confidence 
intervals, 95% of the intervals will captures the 
parameter called the population coefficient alpha, 
and 5% of the intervals will not capture the population 
coefficient alpha. The 5% chance that values can fall 
outside of the interval suggests that over repeated 
samples 2.5% of the intervals will be too low and 2.5% 

will be too high. In summary, the confidence interval 
around coefficient alpha deals with the population 
coefficient alpha that will be represented through 
several samples or repeated sampling. 

It is possible to test a coefficient alpha against a 
specified value.  For example, does a value of .59 differ 
from the alpha obtained with our coefficient alpha of 
.691? The SPSS codes for running this analysis are the 
following:

Reliability
/VARIABLES=trial1 trial2 trial3 trial4 trial5 trial6
/SCALE(‘ALL VARIABLES’)  ALL/MODEL=ALPHA
/STATISTICS=ANOVA
/ICC=MODEL(MIXED) TYPE(CONSISTENCY) 
CIN=95 TESTVAL=.59
 

Results from the F test for the average measures 
reported an F value of 1.325, p=.236. This indicated 
that the two values were not statistically significantly 
different from each other. Testing coefficient alpha 
against a specific value is an advancement beyond 
null hypothesis testing. Readers can see Thompson 
(2003) for a thorough discussion of this advancement 
in measurement. Finally, confidence intervals can be 
found for the d effect sizes, and these like coefficient 
alpha involve noncentralize distributions. 

Discussion
This paper addressed three major areas important 

for hypnosis research. The three issued discussed were 
measurement, effect sizes, and confidence intervals. 
Measurement is important for understanding 
hypnosis research. As previously stated, minorities 
are seldom included within standardization data 
for hypnosis. There are over 40 different measures 
of effect and some are standardized differences like 
Cohen’s d or in correlation form like r.  Finally, effect 
sizes can be presented as corrected and uncorrected 
measures. 

Thompson (2003) has made a number of 
recommendations for social sciences research, and this 
writer thinks the same applies for hypnosis research. 
He recommended that researchers put confidence 
intervals around reliabilities like coefficient alpha. 
As stated within this article, reliability is a function 
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of test items and reliability measures the consistency 
of test items. Also, as previously stated, a confidence 
interval is an interval among an infinitely large set of 
intervals for a given parameter in which 95% of the 
intervals would capture the population parameter. 

Confidence intervals around reliability indices 
require a non-centralized distribution – which 
allows one to a perform power analysis, or the 
probability of rejecting a false null hypothesis (no 
treatment effect). The SPSS computer software was 
used to calculate non-centralized distributions for 
reliabilities. Unlike centralized distributions, which 
have a mean of zero, a non-centralized distribution 
has a mean of some hypothesized value, and non-
centralized distributions are skewed (Bird, 2002). As 
demonstrated within this article, confidence intervals 
were placed around reliability and validity indices. It 
should be clear to the reader that in order to construct 
a confidence interval, one must know the distribution 
that one is working with such as normal, centralized 
t-distribution and so on. Confidence intervals allow 
one to test statistical significance and to find what 
happens in the population. In contrast, traditional 
significance testing only allows one to reject or fail to 
reject the null hypothesis.  

I have challenged the use of null hypothesis 
statistical significance testing within these social 
sciences (Sapp, 2012; 2006;2017). Readers should 
be aware that null hypothesis statistical significance 
only allows one to determine if a relationship is 
significantly greater than zero, and it does not ensure 
replication, nor does it control for threats to internal 
validity.

Internal validity is the judgment applied by a 
researcher to determine if an independent variable 
caused a change on a dependent variable, of if hypnosis 
actually made a difference. Theoretically, random 
assignment or randomly assigning participants to 
groups initially controls for all threats to internal 
validity.

Sapp (2012) recommended that researchers 
provide effect size measures and reliability indices 
for their hypnosis data. In addition, he recommended 
confidence intervals for d effect size measures. 
Unfortunately, this process is an iterative one that 
involves non-central distributions and readers who 

are interested in SPSS programs for calculating such 
intervals can consult (Bird, 2002; Smithson, 2003). 
For a nominal fee, Professor Geoff Cummings, at La 
Trobe University in Australia, has developed software 
that runs under the Excel program, which can be 
downloaded from the following website: http://www.
latrobe.edu.au/psy/esci. This software calculates 
confidence intervals for d effect size measures. 

Finally, hypnosis researchers need to provide 
effect size measures for their data, and that they 
need to calculate reliability indices for their data. 
In conclusion, hypnosis researchers need to think 
meta-analytically, and not mindlessly apply statistics 
and measurement (Fidler, Cumming, Thomason, 
Pannuzzo, Smith, Fyffe, et al 2005). 

Efficacy of hypnosis 
Bergin and Garfield (1994) is the definitive source 

on psychotherapy efficacy. Sapp (1997), citing data 
from Bergin and Garfield (1994), reported that 
hypnosis had an average d effect size of 1.82, and 
he reported a 95% confidence interval around the 
population d of .8025 for the lower limit and 1.0163 
for the upper limit. Four-hundred seventy-five 
studies were included within this analysis. The r 
effect size was .68, and this indicated that hypnosis 
accounted for .4624 of the variance on the outcome 
measures. The statistical power for this analysis was 
1.0, and since statistical power was greater than .90, it 
was excellent. With cognitive-behavior therapy, Sapp 
found the point estimate effect size was 1.13, and the 
95% confidence interval was .4677 for the lower limit 
and .6614 for the upper limit. Although the point 
estimate for cognitive-behavioral therapy had a large 
effect size of 1.13 (sample effect), the 95% confidence 
interval found that within the population of cognitive-
behavioral therapies, the upper and lower limit fell 
within the medium effect size range. Byom & Sapp 
(2013) found that hypnosis had a d effect size of .85 in 
terms of weight reduction. A 95% confidence interval 
around the population d was -.34 for the lower limit 
and 2.04 for the upper limit. The confidence interval 
indicated that there were not statistically significant 
differences. The corrected value of d was .78, and a 
95% confidence interval around the corrected d was 
(-.4, 1.96). This confidence interval also found that 
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there were not statistically significant differences. 
In a meta-analysis of hypnosis, Flammer & 

Bongartz (2003), using 57 studies, found that 
hypnosis had a weighted or adjusted average effect for 
d of .56 (medium effect size). For DSM-V diagnosed 
disorders, they found that hypnosis had a d effect size 
of .63. They also performed a meta-analysis on 444 
hypnosis studies and found a d effect size of 1.07, and 
the d effect size for randomized studies was .56 and 
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