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INTRODUCTION

M ajor depressive disorders (MDD) are associated with
a variety of sleep macroarchitectural disturbances,

based on visual stage scoring of the sleep
electroencephalogram (EEG). These include insomnia,
impaired sleep continuity, abnormalities in the amount and
timing of rapid eye movement (REM) sleep, reductions in

deep non-REM (NREM) sleep, increased awakenings
during the night and increased light, nonrestorative Stage 1
sleep (1-3).

Clinically depressed patients also show a number of
sleep microarchitectural abnormalities, based on
quantitative EEG measurement. Reductions in the
amplitude, incidence and distribution of delta activity across
NREM sleep have been the most consistent findings (3-11),
although not all studies support this finding (12-13). 

Sleep microarchitectural abnormalities are also found in
faster frequency EEG bands including alpha (11), beta (3,
4-15) and in total EEG power (11). Those with MDD show
greater amplitude and incidence of fast-frequency EEG
activity during sleep than healthy controls. Of particular
interest is the finding that women with MDD appear to
have the highest incidence of fast-frequency EEG activity
during sleep, yet show more delta activity than depressed
men (16-17). Moreover, depressed patients particularly
women also show a reduction in temporal coherence of
ultradian EEG rhythms (14,17-18).
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While the specific neurobiological mechanisms
underlying sleep abnormalities in depression have not been
fully explicated, abnormal functions of aminergic and
cholinergic neurotransmission appears likely (19-23).
Serotonin certainly plays a key role in many of the behaviors
associated with depression including mood, sleep, appetite,
sexual activity, neuroendocrine functions, temperature,
motor activity and cognitive function (2,24-25). Serotonin
also affects the induction and maintenance of sleep and the
regulation of the sleep/wake cycle (26). Moreover, the
amount of REM sleep is regulated by both serotonergic and
noradrenergic neurons in the dorsal pontine tegmentum
(26-27). Thus, it is reasonable to expect that antidepressant
medications with selective serotonergic effects should
influence both sleep macro- and microarchitecture in
depressed patients.

Selective serotonergic reuptake inhibitors (SSRIs) have
been shown to produce mild to moderate REM sleep
inhibition in depressed patients — prolonging the latency to
REM sleep and reducing total REM time. These effects were
evident for fluoxetine (28-32), sertraline (33) and
paroxetine (34-35). Both fluoxetine and paroxetine were
also alerting to sleep, increasing the number of awakenings
and light stage 1 sleep, effects which appear to have clinical
relevance. Although both clinicians and patients rate sleep
quality as improved on fluoxetine, more than 20% of
patients report an increase in the number and duration of
awakenings on treatment. This effect is significantly more
pronounced in women than in men (36). Thus, sex
differences may be evident in the sleep effects of SSRIs. 

Although there are a number of preclinical studies that
suggest that SSRIs also impact on quantitative sleep EEG
(37) few studies have evaluated these effects in depressed
patients (38). Nevertheless, it is reasonable to expect that
SSRIs would decrease slow-frequency EEG activity and
enhance fast-frequency components, based on their alerting
effects on sleep macroarchitecture. Moreover, decreased
slow-frequency activity may be more prevalent in women
with depression, who appear to be more sensitive to the
alerting effects of SSRIs (36).

The purpose of the present study was to evaluate the
effects of fluoxetine and potential sex differences on
quantitative sleep EEG over ten weeks of acute phase
treatment in 36 patients with MDD who responded to
treatment. Of particular interest was a comparison of
fluoxetine-induced EEG changes in study completers versus
those who dropped out before the end of the 37-week
protocol. Complete sleep macroarchitectural data and
clinical assessment are reported elsewhere (32).

METHODS

Subjects

Subjects were selected from a pool of self-referred
patients and symptomatically depressed volunteers

recruited by local advertisements. Following an initial
screening visit and written informed consent, potential
subjects underwent full clinical evaluations including
the Structured Clinical Interview for DSM-III-R (SCID)
(39) administered by a trained clinical evaluator and
confirmed by a psychiatrist (M.T.). Depressive symptom
severity was measured by the 17-item Hamilton Rating
Scale for Depression (HRS-D) (40-41) and the 30-item
Inventory for Depressive Symptomatology, both
clinician-rated (IDS-C) and self-report (IDS-SR)
versions (42-43).

All patients were required to meet DSM-III-R (44)
criteria for nonseasonal, nonpsychotic MDD (single or
recurrent), with moderate to severe symptomatology (as
evidenced by a 17-item HRS-D score‡16) and be
between 18 and 50 years of age.

Patients with a history of any other major psychiatric
disorder (including psychoactive substance abuse
within the previous 12 months) were excluded, as were
patients who failed prior adequate treatment with
fluoxetine (at least 4 weeks at 20 mg/day). Individuals
engaged in shift work within the last 6 months and
those with independent sleep disorders (narcolepsy,
apnea, bruxism, restless legs or nocturnal myoclonus)
established either by history or by polysomnogram
(PSG) evaluation were also excluded. Except for
nonsteroidal anti-inflammatory agents, all participants
were drug-free for at least 2 weeks prior to the baseline
sleep study.

Treatment Protocol

Patients received open-label fluoxetine 20 mg/day
(a.m. dosing), for at least five consecutive weeks with an
increase in dose to 40 mg/day if clinically indicated.
Patients who had achieved symptomatic remission at
week 10 (HRS-D†10) were continued on the same dose
of fluoxetine through week 30 (i.e., an additional 20
weeks), after which fluoxetine was discontinued.
Patients were than followed for an additional 6-8 weeks
drug-free (week 37).

The complete study protocol (32) called for sleep
evaluations at baseline (patients were symptomatic but
unmedicated), at weeks 1, 5, 10 and 30 on fluoxetine
treatment, and after 8 weeks following medication
discontinuation. This present report compared sleep
microarchitecture at baseline, weeks 5 and 10 of acute
phase treatment in 24 women and 12 men who
responded (i.e. those with an HRS-D score of †10 at
week 10. Clinical and demographic data on these
patients are shown in Table 1.
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Polysomnographic Evaluations

Sleep assessments were conducted over two
consecutive nights at each measurement occasion in the
Department of Psychiatry Sleep Study Unit of the
University of Texas Southwestern Medical Center. Night
1 served as a laboratory adaptation night. All PSG and
quantitative EEG data reported in the present study are
based on Night 2 recordings at each visit. Regular sleep-
wake habits were established in advance and confirmed
by a self-reported 5-day sleep diary. Alcohol and
napping were proscribed and caffeine restrictions were
in place during the week of study. Each subject
maintained individualized, regular bed and rise times for
at least the 5 days prior to sleep study (as confirmed by
home diary). An identical sleep-wake schedule was
followed during the sleep laboratory studies.

Electroencephalographic (EEG) data were recorded
from left (C3) and right (C4) central electrodes with a
common ear reference passed through a 10k ohm
resistor to minimize nonhomogenous current flow (45).
Monopolar, left and right electrooculograms, and bipolar
chin-cheek electromyograms were also recorded. A full
electrode montage, used on the first night in the sleep
laboratory, included leg, chest and abdomen leads, and a
nasal-oral thermistor to rule out independent sleep
disorders. Interelectrode impedance was maintained

below 2 Kohms.
All electrophysiologic signals were recorded on

GRASS P-511 A/C amplifiers and displayed on a
paperless polygraph system designed and validated in-
house. An amplifier sensitivity of 5 was used for EEG (50

V, 0.5-second duration calibration) corresponding to a
gain of 50,000, with half-amp low- and high-bandpass
filters set at 0.3 and 30 Hz, respectively. A 60-Hz notch
filter attenuated electrical noise. Amplifiers were
calibrated before and after each night s sleep. As is
standard procedure in our laboratory, EEG amplifiers
were counterbalanced between hemispheres, across
subjects, and between nights to rule out amplifier
artifact as a contributing source to interhemispheric
differences (46).

Signals were digitized on-line at 250 Hz (62.5 Hz for
EOG and EMG) through a 16-bit MICROSTAR
analogueto-digital (A/D) converter Raw digitized data
were stored on a write-once-read-many (WORM) optical
disk for off-line PAA and PSA. Sleep records were scored
according to standard analysis criteria (47) by research
personnel trained at better than 90% stage agreement on
an epoch-by-epoch basis. All records were inspected
visually and epochs containing movement, breathing or
muscle artifact, or recording difficulties were excluded
from analysis.
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n= 36
Measure n Range Mean – SD or %

Age (yr) 36 (18-50) 36.5–9.6
Education (yr) 36 (11-24) 14.3–2.4
Female 24 66.7%
Male 12 33.3%
Axis V

Current Level 36 (45-70) 55.7–4.7
Highest Level 36 (5-80) 62.8 – 11.8

Age at onset (yr) 35 (8-49) 26.2 – 12.1
Number of episodes 30a (1-4) 1.8 – 1.0
Length of illness (yr) 35 (0-38) 10.1 – 10.5
Length of current episode (months) 36 (1-168) 37.4 – 38.0
Depressive symptom severity

HRS-D 36 (16-29) 21.2 – 2.7
IDS-C 36 (27-58) 38.1 – 8.0
IDS-SR 33 (28-61) 42.3 – 8.4

Course of illness
Recurrent, complete recovery 8 22.2%
Recurrent, incomplete recovery 8 22.2%
Single episode 16 44.4%
Unknown 4 11.1%

Depressive subtype (MDD only)
RDC Primary 30 83.3%
RDC Secondary 4 11.1%
Unknown 2 5.6%

RDC Endogenous 16 44.4%
RDC Nonendogenous 19 52.8%
Unknown 1 2.8%
DSM-IV Meloncholic 8 22.2%
DSM-IV Nonmeloncholic 28 77.8%

Family history subtype
Depression Spectrum Disease 12 33.3%
Familial Pure Depressive Disease 5 13.9%
Sporadic Depressive Disorder 6 16.7%
Familial Bipolar Disease 1 2.8%
Unknown 12 33.3%

Table 1. Demographic and clinical features of all participants

aNumber of episodes too many to count in n= 6



Computer Quantification of EEG

Period amplitude analysis (PAA) was used to
quantify EEG frequency bands. The PAA algorithm used
here has been described in detail elsewhere (14,48), and
includes zero-cross and first-derivative analyses
measuring incidence and an amplitude measure for each
frequency band defined as: delta (0.5 to < 4 Hz); theta
(4 to < 8 Hz); alpha (8 to < 12 Hz); sigma (12 to < 16
Hz); and beta (16 - 32 Hz).

Briefly, a half-wave zero-cross event is a polarity
change in signal voltage between two successive data
points. The full-wave first-derivative analysis detects
voltage shifts that do not necessarily change polarity, a
negative inflection in three successive data points,
representing an instance of zero slope. For zero-cross
and first-derivative analyses, the algorithm computes
the time interval between successive events, thereby
determining the frequency. At the end of each 30s
epoch, the percentage of total time in each frequency

band is computed independently for zero-cross and
first-derivative measures. An amplitude measure is
derived for each frequency, based on the sum of the
squared amplitude of the data points in corresponding
zero-cross bins.

Statistical Procedures

The incidence and amplitude measures were
averaged in each REM and NREM sleep stage for each
subject. Epochs of wakefulness or those with artifact
were excluded from analyses. Data were coded for sex
(between-group variables), treatment status (baseline,
week 5, week 10), hemisphere, sleep stage and EEG
frequency band (all within-subject variables). Two
overall MANOVAs were computed, one for amplitude
and one for incidence. This procedure was used to
reduce the complexity of subsequent data analyses,
eliminate redundant variables and add statistical rigor
against Type I errors.

The MANOVAs indicated that treatment effects did
interact with EEG frequency band for amplitude and
incidence (F= 2.6, df= 8,27, p<.03; F= 3.4, df= 8,27,
p<.009; respectively) but not with hemisphere or sleep
stage. Thus, for all subsequent analyses, data were
collapsed across sleep stage and hemisphere. Treatment
status and EEG frequency band were treated as repeated

measures with sex as the between-group variable. The
Results Section summarizes the effects of fluoxetine on
EEG frequencies for all participants followed by a
comparison of study completers versus those who
discontinued early. All statistical analyses were
conducted using SAS“ for Windows routines and
conservative Geiser-Greenhouse adjusted probabilities
are reported for all effects to further minimize Type I
errors.

RESULTS

Sleep Macroarchitecture

Sleep macroarchitectural measures at baseline, week
5 and week 10 are shown in Table 2 for comparison
purposes only (see Trivedi et al. for additional detail)
(32). Both five and ten weeks of fluoxetine treatment
were associated with more disturbed sleep compared to
baseline as evidenced by decreased sleep efficiency and

% Stages 3 and 4 sleep, and by increased Stage 1 sleep.
Latency to the first REM period was significantly longer
on treatment with a reduction of 2-4% REM sleep time.

Sleep Microarchitecture

Repeated-measures ANOVA revealed significant
treatment by EEG frequency band interactions for both
amplitude and incidence (F= 4.7, df= 8,272, p<.01; F=
2.8, df= 8,272, p<.05; respectively). To compare
treatment effects on individual EEG frequency bands,
ANOVAs were computed contrasting baseline to week 5
and baseline to week 10. As predicted, both beta and
delta amplitude showed significant changes from
baseline at week 5 (F= 8.9, df= 1,34, p<.006; F= 10.3,
df= 1,34, p<.003; respectively). The means, shown in
Table 3, indicated that beta amplitude increased on
fluoxetine, whereas delta amplitude decreased.
Comparison between baseline and week 10 was also
significant for both beta and delta amplitude (F= 9.2,
df= 1,34, p<.005; F= 4.3, df= 1,34, p<.05; respectively).
As seen at week 5, beta amplitude was higher after 10
weeks of treatment. Delta amplitude, however,
increased from week 5 to week 10, indicating some
adaptation over the course of treatment, although still
below baseline levels.
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Table 2. Means and standard deviations of key sleep macroarchitectural measures for all participants (n = 36)

Numbers in boldface are significantly different from baseline p<.05.

Baseline Week 5 on Fluoxetine Week 10 on Fluoxetine
Mean – S.D Mean – S.D Mean – S.D

Total Sleep Period (min) 420.3 – 59.9 424.0 – 53.5 419.5 – 54.5
Sleep Latency (min) 17.9 – 10.2 15.3 – 9.1 15.7 – 13.4
REM Latency (min) 80.1 – 25.1 141.6 – 59.5 133.2 – 54.8
% Stage 1 16.4 – 6.3 23.9 – 8.6 24.7 – 8.7
% Stage 2 53.1 – 9.9 51.5 – 8.8 48.4 – 10.9
% Stage 3 + 4 3.2 – 4.4 1.9 – 2.4 1.9 – 2.6
% REM 16.9 – 4.4 12.6 – 4.5 14.5 – 4.5
% Sleep Efficiency 72.5 – 9.0 65.1 – 9.8 64.3 – 10.5



Interestingly, significant treatment effects were also evident
for sigma and alpha amplitude, comparing baseline to week
5 (F= 9.4, df= 1,34, p<.005; F= 9.1; respectively), although
these effects were not predicted a priori. Comparing baseline
to week 10, only sigma amplitude remained significant (F=
4.9, df= 1,34, p<04). The effect sizes, however, were
substantially smaller than that observed for either beta or
delta amplitude. Those, in contrast to robust and sustained
changes in beta amplitude at both week 5 and week 10,
sigma, alpha and delta amplitude showed some adaptation or
recovery over the course of treatment. Theta amplitude
showed no significant treatment effects (see Table 3).

No treatment effects were evident for incidence measures
except for delta. Delta incidence was significantly lower at
both weeks 5 and 10 compared to baseline (F= 9.6, df= 1,34;
p<.004; F= 6.2, df= 1,34, p<.02; respectively).

Sex main effects were obtained on a number of EEG
measures, but they did not interact with treatment status
(F<1) and are, therefore, not reported.

Study Completers Versus Dropouts

Analyses also compared the acute phase effects of
fluoxetine on amplitude and incidence measures in those
who completed the entire 30 week study versus those who
discontinued early to evaluate potential outcome prediction.
Of the 36 acute-phase (week 10) treatment responders, 14
dropped out of study prior to week 30. An additional eight
patients relapsed during continuation treatment. One
additional subject discontinued for unknown reasons and
could not be located for follow-up. Thus, 13 participants (5
men and 8 women) completed all phases of the protocol
including discontinuation with 23 drop-outs (7 men and 16
women). It is important to note that analyses of the sleep
macroarchitectural measures and blood levels of fluoxetine
and its metabolites did not differ between study completers
and dropouts. However, the HRS-D scores at the end of week
10 were significantly lower (p<.04) in the 13 completers (4.0
– 2.2) compared to drop-outs (6.0 – 2.7) as reported
previously (32). Sleep EEG data were coded for group
(completers versus dropouts). Treatment status (baseline,
week 5 and week 10) was treated as a repeated measure. For
this last set of analyses, only beta and delta amplitude and
incidence were included.

Results indicated that increased beta amplitude and
incidence were evident in study dropouts. The ANOVAs
showed a significant treatment status by group interaction for
beta incidence (F= 4.4, df= 1,34, p<.04 baseline to week 5;
F= 4.4, df= 1,34, p<.04 baseline to week 10). Means
indicated higher beta incidence among study dropouts. The
interaction for beta amplitude approached significance (F=
2.7, df= 1,34, p<.11 baseline to week 5; F= 3.9, df-1,34,
p<.06 baseline to week 10). Means indicated a higher beta
amplitude in those who did not complete the study. These
effects are also illustrated separately for men and women in
Figure 1. Although there was no significant interaction with
sex (F= 2.2, df= 3,32, p<.11), the means clearly indicated a
greater increase in beta amplitude in male dropouts, as seen
in Figure 1. Although fluoxetine decreased delta amplitude
and incidence as reported above, differences in delta between
completers and dropouts did not approach significance
(p<.20).
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Baseline Week 5 on Fluoxetine Week 10 on Fluoxetine

Amplitude (in V2)
Beta 24.2 – 20.0 47.3 – 48.9 46.6 – 53.4
Sigma 20.4 – 8.6 25.4 – 11.1 23.1 – 8.2
Alpha 45.0 – 14.6 50.5 – 16.0 46.9 – 14.9
Theta 125.2 – 38.6 126.9 – 46.2 117.6 – 35.5
Delta 558.5 – 210.7 482.9 – 168.9 526.6 – 229.2

Incidence (% time)
Beta 29.4 – 13.7 31.3 – 14.4 32.2 – 13.4
Sigma 7.6 – 2.1 8.2 – 2.3 8.1 – 2.2
Alpha 12.8 – 2.9 13.6 – 2.6 12.8 – 2.7
Theta 21.8 – 3.7 21.7 – 4.0 20.7 – 3.7
Delta 53.0 – 9.5 47.2 – 10.5 49.4 – 8.9

Table 3. Means and standard deviations of amplitude and incidence measures at baseline, week 5 and week 10 for
all participants (n = 36)

Numbers in boldface are significantly different from baseline p<.05.

Figure 1. Mean beta amplitude at baseline, week 5 and week
10 for study completers (n=13) and dropouts (n=23), shown
separately for men and women. Five men and 8 women
completed all phases of study. Seven men and 16 women
dropped out before week 30.
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